Gresham GI Special Edition Stainless Steel Tonnaeu Case White and Blue Colourway Watch G1-0001-WHT

£9.9
FREE Shipping

Gresham GI Special Edition Stainless Steel Tonnaeu Case White and Blue Colourway Watch G1-0001-WHT

Gresham GI Special Edition Stainless Steel Tonnaeu Case White and Blue Colourway Watch G1-0001-WHT

RRP: £99
Price: £9.9
£9.9 FREE Shipping

In stock

We accept the following payment methods

Description

So the focus of these lectures will be on identifying and analyzing six key areas of the Victorian experience, looking at them in international and global perspective: time and space, art and culture, life and death, gender and sexuality, religion and science, and empire and race. I'll try to tease out some common factors amongst all the contradictions and paradoxes, and trace their change over time. And in no area was change more startling to contemporaries than in the topic I want to deal with this evening, namely the experience of time and space. As the century progressed, people felt increasingly that they were living, as the English essayist William Rathbone Greg put it in 1875, 'without leisure and without pause - a life ofhaste'. Comparing life in the 1880s with the days of his youth half a century before, the English lawyer and historian Frederic Harrison remembered that while people seldom hurried when he was young, now 'we are whirled about, and hooted around' without cessation. 'The most salient characteristic of life in this latter portion of the 19thcentury', Greg concluded, 'is its SPEED.' Time was becoming ever more pressing.

Gresham introduces the latest in cutting edge watch design and construction, fusing architectural elegance with the intricacy of traditional watch making. We’ve got a huge range of 100% genuine luxury watches from leading brands such as Rolex, Tag Heuer, Omega and Breitling, all individually assessed and valued by our expert buyers. The Genesis GI Features a hybrid Steel and Aluminium Exo frame chassis which embodies the exposed skeleton custom automatic movement with self-winding mechanism. The case is seamlessly integrated on a custom designed high density rubber strap. The following paper is a helpful summary of Wren’s mathematical work which gives detail of the original sources, for example the places in Wallis’s Tractatus de Cycloide where he explain’s Wren’s rectification of the cycloid and solution to Kepler’s problem. Wren the Mathematician, D.T. Whiteside, Notes & Records of the Royal Society, 15, pp107-111 (1960).You’ll find everything from classic models to modern styles, featuring materials such as gold, silver and diamond, so you’re sure to find the perfect men’s or ladies' designer watch. This, in essence, is what I propose to do in this series of six lectures, beginning today and stretching over the next few months. I'm not going to attempt a comprehensive survey of the Victorians, or offer any kind of chronological narrative, though change over time will indeed be one of my themes. The story of the y = x 3approximation to the perfect masonry dome, and a derivation of the correct equation, is given in Hooke's Cubico-Parabolical Conoid, by Jacques Heyman, in Notes and Records of the Royal Society of London, Vol. 52, No. 1 (Jan., 1998), pp. 39-50 https://www.jstor.org/stable/532075. The three conics, by Pbroks13, CC BY 3.0, via Wikimedia Commons https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg Neither of these demonstrations have been preserved, and it’s not clear if they were mathematical proofs or the outcomes of physical experiments. However, some years later Hooke did write down in anagram form a phrase which indicates that he had determined the solution to the problem (even if he had not necessarily found a mathematical proof): it’s a catenary. A catenary is the curve made by a chain or rope allowed to hang freely between two points. Galileo had talked about this problem; he thought that to a good approximation the solution was a parabola, but it was discovered later to be a subtly different curve. Hooke found that the equations describing the forces acting on a hanging chain are equivalent to those describing the forces acting on an arch (this time not tension and gravity but compression and gravity). That would imply that the most stable, strongest shape for an arch is a catenary, but upside-down. You can make the actual curve of the arch a slightly different shape but the line of thrust is still a catenary curve, so that needs to be part of the structure of the arch. This means the shape that requires the least amount of material, the most efficient shape, is indeed a catenary. So, we now have an outer hemispherical dome with a gigantic lantern, that can’t support itself and needs some kind of internal structure. To hide that internal structure, Wren built an inner dome whose cross section is a catenary, fitting in very nicely with other elements of the internal design.

But what about the support for the outer dome and lantern? What Wren did there was to build a third, middle dome – and for this he wanted the strongest possible dome shape. While the catenary is optimal for an arch, that doesn’t guarantee it’s optimal for a dome. Wren and Hooke believed that the perfect shape would in fact be the positive half of the curve y= x 3 . Why did they think this? Well, we can do a bit of investigation here. It’s similar in flavour to the fact that a parabola ( y=a x 2 ) is a good approximation to a catenary. If we think about trying to find the equation of a catenary, we see that in equilibrium, the forces at every position along a hanging chain must balance. If we think about a point (x,y)on the chain, the weight Wof the section of the chain between 0 and xwill be pulling vertically downwards, the force Fexerted by the tension from the entire left-hand half of the chain will be acting horizontally to the left, and the tension Tfrom the remaining upper right-hand part of the rest of the chain will be acting upwards along the chain, at an angle of θto the horizontal. The vertical forces balance, so we get W = Tsin θ , and F=Tcos θ . That means tan θ = W F . We can make an approximation that y x =tan θas well (this would be true if we had a straight line from the origin to (x,y) , but we actually have a curve). The final step is to make another approximation, that W is proportional to x ; this would again be true if we had a straight line from the origin to (x,y) . So we get the approximation that y x =axfor some constant a , and hence that y=a x 2 , a parabola. This is a reasonable approximation and gets better the smaller the curvature. The actual general equation of a catenary curve passing through the origin is y= 1 2b ( e bx + e -bx -2 ), where bis a chosen fixed constant. There’s an infinite series we can use to calculate this expression: y= b x 2 2 + b 3 x 4 24 + b 5 x 6 720 +… (higher powers of x ). If xis small, then successive powers of xare even smaller, so the term doing all the hard work here is b x 2 2 .If we choose a= 1 2 b , we can see that the parabola matches this very closely. Right, that was the warm-up. Now think about a dome. If we try to resolve the forces this time, the weight pulling downwards at a given point will be (approximately) proportional, not to a length, but to a surface area, and so our equivalent of y xthis time is going to be proportional, approximately, to x 2 , not x . (This is all extremely rough and ready!) So we can understand why Hooke and Wren arrived at the approximation of a cubic curve, y= ax 3 , for (a cross-section of) the ideal dome. Again, the true equation has been found since then. It’s extremely complicated! There’s a series expansion of it that begins y=a( x 3 + x 7 14 + x 11 440 +…)so for small xthe cubic equation is a good approximation.If you’d like to read more about Wren’s life, two very good places to start are Lisa Jardine’s 2002 biography On a Grander Scale, and Adrian Tinniswood’s 2001 biography His Invention so Fertile. There were two key questions people always had about curves, known as “quadrature” and “rectification”. Quadrature is finding the area under a curve. Galileo approximated the quadrature by making a cycloid out of metal and weighing it, but he didn’t know the exact formula. We don’t know for sure when he did this, but he wrote in 1640 that he’d been studying cycloids for 50 years. At any rate, it took until the 1630s for the correct solution to be found (probably first by Gilles de Roberval): if the rolling circle has area π r 2 , then the area under each cycloid arch is 3π r 2 . Very nice. But the cycloid had still not been “rectified”: this means finding its length. The first person to do this, of all the illustrious mathematicians who had studied it, was Christopher Wren. He showed that the length is another beautifully simple formula. If the rolling circle has diameter d , its circumference is πd , and each cycloid arch has length precisely 4d . (Actually, Roberval claimed to have done this first too, but he did that a lot. He only started making this claim after Wren told Pascal the result, and Wren’s proof was the first to be published, as far as I know. The general consensus at the time and since seems to be that Wren was indeed the first to rectify the cycloid.)

How a watch keeps time is vital to how accurate its timekeeping is. Quartz movement watches are often prized for their accuracy, while a well-crafted automatic watch is a true investment piece. Prefer something vintage? Browse our collection of stunning manual watches. Ramsdens Watch Services Allan H Brooks/ New Control Tower Newcastle Airport/Image use permitted under CC BY-SA 2.0 https://commons.wikimedia.org/wiki/File:Newcastle_International_Airport_Control_Tower.jpgThe portrait of Christopher Wren is from the National Portrait Gallery https://www.npg.org.uk/collections/search/portrait/mw06939/Sir-Christopher-Wren

The scale of the British Empire and the dominance of British industry ensured that in 1890 nearly two-thirds of the telegraph lines in the world were owned by British companies, which controlled 156,000 kilometers of cables. But the influence of the system extended far beyond the British Empire. The growth of the new global communication networks meant, as the writer Max Nordau noted in 1892, that the simplest villager now had a wider geographical horizon than a head of government a century before. If he read a paper he 'interests himself simultaneously in the issue of a revolution in Chile, a bush-war in East Africa, a massacre in North China, a famine in Russia'. Wren’s solution of Kepler’s problem manages to relate the areas into which the semicircle must be divided to lengths of specific circle arcs. These are then equated to carefully positioned “stretched” or “prolate” cycloids – which of course Wren already knew how to find the length of, from his own earlier work. And so he was able to solve Kepler’s problem. His solution was published by John Wallis in a 1659 treatise on the cycloid (which also included Wren’s rectification of the cycloid). If your Latin is tip-top, you can give it a read: John Wallis: Tractatus duo, prior de cycloide et corporibus inde genetis: posterior, epistolaris in qua agitur de cissoide. In a 1668 letter, the English mathematician John Wallis said that although the challenge of Kepler’s problem had been issued to the French mathematicians almost a decade previously, “there is none of them have yet (that I hear of) returned any solution”. Take that, Jean de Montfort! Within major cities, tram systems, and suburban and underground railways began to speed up traffic, just as the main roads were becoming clogged with horse-drawn cabs and carriages, automobiles and omnibuses. In 1863 the world's first underground railway, the Metropolitan, opened in London, and was soon extended, but steam locomotives posed many problems, and the cut-and-cover method of construction soon ran out of roads that could be dug up, and London turned to boring deeper lines for 'tube' trains powered by electricity, the first of which was opened in 1890. Above ground, the electric tramway system devised by Werner von Siemens began running in Berlin in 1879, and soon spread to many other countries. In the course of my exploration I will not simply confine myself to English or even British history, for Britain was connected to Europe and the wider world in multifarious ways during the nineteenth and early twentieth centuries. Anyone seeking an illustration of this could do worse than to cast an eye over the Table of Contents of A. N. Wilson'sThe Victorians, with its chapters on France, Germany and Italy, India, Jamaica and Africa, and its coverage of Wagner, Dostoevsky and Tolstoy. Many of the ideas, beliefs and experiences of the Victorians were shared by people in a variety of different countries, from Russia to America, Spain to Scandinavia, and were reflected in the literature and culture of the nineteenth century, up to the outbreak of the First World War. Beyond this, overseas Empire loomed ever larger in the consciousness of the Victorians, until it came to express itself in an ideology, the ideology of imperialism.

Robert Hooke, oil painting on board by Rita Greer, history painter, 2009, who has made the digitized version available under the Free Art Licence http://artlibre.org/licence/lal/en/. It’s available from Wikimedia https://commons.wikimedia.org/wiki/File:17_Robert_Hooke_Engineer.JPG In February 1658, mathematicians in England received a challenge from France. It read “Jean de Montfort [possibly a pseudonym for Pascal] greatly desires that those distinguished gentlemen, the Professors of Mathematics, and others in England renowned for mathematical skill, may condescend to resolve this problem”. The problem was, given an ellipse of known dimensions, and a chord of the ellipse crossing the major axis at a known point and angle, to find the lengths of the segments of that chord. Wren solved the problem, and then in return challenged the mathematicians of France to solve another problem about ellipses, which I’ll tell you about now. There’s an excellent article by Tony Philips on the mathematics of shells at http://www.ams.org/publicoutreach/feature-column/fcarc-shell1. I created my designs in Geogebra3D, using a modified version of the general solid logarithmic spiral equation discussed in the article.



  • Fruugo ID: 258392218-563234582
  • EAN: 764486781913
  • Sold by: Fruugo

Delivery & Returns

Fruugo

Address: UK
All products: Visit Fruugo Shop