276°
Posted 20 hours ago

Christmas Tiered Tray Decor Christmas Book Stack Wooden Truck Tree Decor Farm Fresh Christmas Trees Wooden Block Sign Farmhouse Xmas Tree Gnomes Plush Beads Garland Decor Set for Home Table (Joy)

£12.52£25.04Clearance
ZTS2023's avatar
Shared by
ZTS2023
Joined in 2023
82
63

About this deal

Dupre S, Woodside J, Foucher JP, de Lange G, Mascle J, et al. (2007) Seafloor geological studies above active gas chimneys off Egypt (Central nile deep sea fan). Deep-Sea Res, Part I 54: 1146–1172. Wenzhöfer F, Holby O, Glud RN, Nielsen HK, Gundersen JK (2000) In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Mar Chem 69: 43–54. Millero FJ, Plese T, Fernandez M (1988) The Dissociation of Hydrogen Sulfide in Seawater. Limnol Oceanogr 33: 269–274.

Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh C, et al. (2000) Marine ecology – Do mussels take wooden steps to deep-sea vents? Nature 403: 725–726. Olu-Le Roy K, Sibuet M, Fiala-Medioni A, Gofas S, Salas C, et al. (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Res, Part I 51: 1915–1936.In general, the specific types of colonizers and their succession on different wood falls may depend on a variety of factors, including the geographic location, season, and the type and size of wood. The rapid colonization of the wood experiments in the Nile deepsea fan suggests that terrestrial woody material may have been a regular resource in this oligotorophic environment for a long time, e.g. through input by the Nile river. However, it remains unclear how organisms localize wood falls in the vast deep-sea environment (e.g., chemical cues like the presence of organic matter, degradation products) and what their reproductive and dispersal strategies are. High DOC fluxes at the wood experiments suggest that motile organisms may be attracted by dissolved organic signal molecules. You’ll also find that wooden false ceilings look great in any room where they’re installed because they give the room an authentic wood look and feel. And since the wood comes from sustainable sources, you won’t have to worry about any harmful chemicals being used during its production. Boetius A, Lochte K (1996) Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar Ecol Prog Ser 140: 239–250. Fagervold SK, Galand PE, Zbinden M, Gaill F, Lebaron P, et al. (2012) Sunken woods on the ocean floor provide diverse specialized habitats for microbes. FEMS Microbiol Ecol. Khelaifia S, Fardeau M-L, Pradel N, Aussignargues C, Garel M, et al. (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61: 2706–2711.

A more in-depth analysis of shared bacterial types between samples was performed at the level of operational taxonomic units defined at 3% sequence difference (OTU 0.03), to avoid masking patterns when pooling sequences into broader taxonomic categories. Singletons, i.e., sequences occurring only once in the whole dataset (36% of the total number of OTU 0.03) were removed, and shared and unique OTU 0.03 between samples were calculated with 1000 sequence re-samplings in each sample based on the smallest dataset, to account for differences in sequence numbers between samples. 18% of OTU 0.03 were shared between the three woods submerged for one year ( Figure S4a), containing the majority of all sequences (72%). In addition a considerable proportion of OTU 0.03 were unique to one sample (14–21%), but in total they only represented 6% of all sequences. In contrast, only 10% of the OTU 0.03 were mutually shared between control wood#6 (submerged for 1 day) and the three woods submerged for one year ( Figure S4b). For pairwise comparisons between woods and their surrounding sediments (0.5 m and 10 m) the largest proportion of shared OTU 0.03 occurred between wood#5 and the sediment wood-chip boundary layer at wood#5 (23%; other comparisons: 4–5%). Hall POJ, Brunnegård J, Hulthe G, Martin WR, Stahl H, et al. (2007) Dissolved Organic Matter in Abyssal Sediments: Core Recovery Artifacts. Limnol Oceanogr 52: 19–31.

Knittel K, Boetius A (2009) Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annu Rev Microbiol 63: 311–334. Desbruyeres D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna. Linz, Austria: Biologiezentrum der Oberösterreichischen Landesmuseen. 544 p. Luther GW, Rozan TF, Taillefert M, Nuzzio DB, Di Meo C, et al. (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410: 813–816. Johnson KS, Beehler CL, Sakamotoarnold CM, Childress JJ (1986) In situ measurements of chemical distributions in a deep-sea hydrothermal vent field Science. 231: 1139–1141. Bernardino AF, Levin LA, Thurber AR, Smith CR (2012) Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls. PLoS ONE 7: e33515.

Distel DL, Roberts SJ (1997) Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. Biological Bulletin 192: 253–261. Fang JS, Shizuka A, Kato C, Schouten S (2006) Microbial diversity of cold-seep sediments in Sagami Bay, Japan, as determined by 16S rRNA gene and lipid analyses. FEMS Microbiol Ecol 57: 429–441. Felden J, Wenzhöfer F, Feseker T, Boetius A (2010) Transport and consumption of oxygen and methane in different habitats of the Hakon Mosby Mud Volcano (HMMV). Limnol Oceanogr 55: 2366–2380. Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow-water station in the Western Kiel Bight. Mar Biol 77: 247–256. Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, et al. (2009) Phycisphaera mikurensis gen. nov., sp nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov and Phycisphaerae classis nov in the phylum Planctomycetes. J Gen Appl Microbiol 55: 267–275.Laurent MCZ, Gros O, Brulport J-P, Gaill F, Le Bris N (2009) Sunken wood habitat for thiotrophic symbiosis in mangrove swamps. Mar Environ Res 67: 83–88. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9: 1342–1360. Wenzhöfer F, Glud RN (2002) Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep-Sea Res, Part I 49: 1255–1279. Lichtschlag A, Felden J, Bruchert V, Boetius A, de Beer D (2010) Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Hakon Mosby Mud Volcano (Barents Sea). Limnol Oceanogr 55: 931–949.

Fir is soft and light, making it ideal for use in rooms with high humidity levels. It is also easy to work with and can be stained or painted to match any décor scheme. Fir costs less than other woods such as oak, but it can be more difficult to find and is rarely used on its own due to its low density. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, et al. (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205: 219–238. Autumn is one of the most beautiful times of year. With bright foliage, colorful squashes and pumpkins, and beautiful sunflowers and mums, its fiery, golden color scheme is an amazing example of natural beauty. If you want to bring a hint of that beauty to your home, try one of our gorgeous fall front door decor ideas! 25 Sweet Fall Front Door Decor Ideas to Welcome Autumn If you wish to hang heavy objects from the wooden false ceiling, such as a swing, you’ll first need a solid hook in the roof slab that can withstand the weight of the swing as well as the weight of those who will sit on it. A main objective of this study was to investigate the colonization of sunken woods by bacteria, and to test the hypothesis that core bacterial communities may develop in sunken woods. The degradation of submerged wood as a source of energy and carbon requires complex enzymatic transformation of the macromolecular matter by adapted microbial communities [52], [91]. In the context of cellulose degradation for biofuels, the potential discovery of novel bacterial types and enzymes adapted to high salinity may be of interest for industrial applications [92]. On land, fungi play an important role in the degradation of woody material, but little is yet known about key aquatic microbial organisms responsible for the degradation of cellulose [93], despite it being the second most abundant carbohydrate in the sea and the most abundant on land. Previous studies on microbial communities colonizing sunken woods indicate that bacteria dominate sunken woods compared to fungi or archaea [15], [16], [94], but the main types forming the core community remained unknown.Foucher JP, Westbrook GK, Boetius A, Ceramicola S, Dupre S, et al. (2009) Structure and Drivers of Cold Seep Ecosystems. Oceanography 22: 92–109.

Asda Great Deal

Free UK shipping. 15 day free returns.
Community Updates
*So you can easily identify outgoing links on our site, we've marked them with an "*" symbol. Links on our site are monetised, but this never affects which deals get posted. Find more info in our FAQs and About Us page.
New Comment